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Abstract

The biggest obstacle to our ability to make sense of quantitative biological data is our inability to infer
large underlying state spaces from highly subsampled data, i.e. inference of nonunifilar Hidden Markov
Models. The epsilon machine presentation and/or information theoretic quantities easily calculable using
the unifilar epsilon machine presentation might be useful additions to the traditional nonunifilar HMM
inference toolbox. I calculate the epsilon-machine presentations in forward and reverse time of some
simple syncable nonunifilar word generators, where I use syncable to mean that there is a direct mapping
from observed symbols to internal states for observation of all but one of the letters. All of the word
generators investigated here have a countable infinity of causal states but finite statistical complexities
in both forward and reverse time. I show that, as might have been expected, it is impossible to infer
the number of hidden states if all the hidden states are identical; however, some preliminary results
suggest that it may be possible to infer the number of hidden states if something is known about how
the hidden states’ transition probabilities are generated. I also show that the syncable binary word
generators considered here are all causally reversible, but preliminary results suggest that the typical
syncable word generators that emit three or more letters are causally irreversible.
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1 Introduction

At present, there are essentially two disjoint quantitative modeling approaches to understanding neurobi-
ology. The first approach involves painstakingly modeling the detailed components of many neurons and
throwing everything and the kitchen sink into a gargantuan simulation, which is then run for hours, days or
weeks on a supercomputer. This, for instance, is the approach pursued in Europe’s Human Brain Project.
This approach is quite useful for answering the questions of how neurons fire and how neurons increase or
decrease connection strength, but this approach makes it difficult to understand why any particular set of
neurons in any particular part of the brain would connect in some particular way. In other words, whole-scale
simulations of cortical regions bury the question of what computation the brain is performing in the details
of the simulation and hope that computation will “emerge” from their framework. So far, the state-of-the-art
large-scale cortical simulations can say that the brain is chaotic and that alpha and gamma waves exist [1].
Both are true statements, but it is difficult to understand why the simulations produced these results and
what purpose the emergent phenomena serve from the simulations alone.

The alternative approach to quantitative modeling of neurobiological data involves studying minimal
models that are consistent with some subset of gathered data. These approaches generate tractable models
that replicate only some of the available data in hopes that these minimal models have captured the essence
of the brain’s computation. Underlying such modeling approaches is the assumption that microscopic details
don’t matter in the same way that critical exponents in statistical physics are functions solely of the system’s
symmetries. Some notable examples of this approach to neurobiological modeling include Maximum Entropy
(MaxEnt) models of neuronal spiking [2, 3], sparse coding [4], and maximization of mutual information
(InfoMax) models of receptive fields [5, 6]. There is, of course, an obvious flaw to this class of models, which
is that the usefulness of this model is completely determined by which gathered data is taken to be relevant.
In MaxEnt approaches, the constraints constitute a value judgement on what data is relevant, and emphasis
on matching pairwise correlations yields MaxEnt models that do not capture local cortical computation
[7] and do not have sparse neuronal activity [8]. In InfoMax approaches, the specification of input and
output constitute value judgements on which input is relevant and which output is readable. Approaches
like sparse coding are more direct attempts at manifold learning of the input via a union of planes. However,
in trying to make an equivalence between the sparse coding models and brain function, there is still a value
judgement in order to constrain an underconstrained learning problem– namely, there is a value judgement
that the neuronal activity be sparse. And sparse coding and InfoMax are still limited to predicting receptive
fields, which are highly stimulus dependent [9] and therefore unlikely to be the “right” relevant variable for
prediction. In other words, the applicability of these models is inherently limited by the prior intuitions of
the modeler about computation in the brain.

In short, there are two approaches to neurobiological models, with two disjoint sets of pros and cons
and no obvious bridge between the two. What the Brain Activity Map needs in order to succeed is some
bridge between the two approaches that allows one to leverage the tractability and intuition provided by
minimal models without assuming that the minimal modeler has to know, in advance, the computation being
performed by the brain. The ε-Machine is a user-proof minimal model of stationary time-series, and as far
as I know, it is the only user-proof minimal model of stationary time-series. As such, it is entirely worth
investigating how to infer ε-Machines and how to recognize the nonunifilar word generator that produced
a particular (unifilar) ε-Machine, essentially unpacking an observed time series into its causal states and
repacking those causal states into a “minimal nonunifilar word generator” that might be isomorphic to the
underlying system.

In some underlying state space (which could involve many higher order derivatives of the more natural
state space variable), the observed data is generated by a nonunifilar Hidden Markov Model (HMM). There-
fore, in this report, I considered a class of nonunifilar HMMs with particularly tractable epsilon-machine
presentations. These nonunifilar HMMs were generated by taking some underlying state space and partition-
ing the underlying states into m groups, m−1 of which consisted of a single underlying state. The last group
contained all remaining underlying states. Transitions to group k resulted in emission of the letter k. The
ε-Machine presentations of these word generators were particularly simple because these word generators
were “syncable”, in that seeing all but one of the letters would result in syncing to one of the internal states.
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The report’s layout is as follows. In Section 2, I go through the example of the already studied simple
nonunifilar source. In Section 3, I introduce a variation on the simple nonunifilar source that allow me to
flirt with extensions to continuous time in Section 3.1. In Section 4, I consider binary nonunifilar HMMs
that are syncable in the sense described in the paragraph above. In Section 4.1, I again flirt with continuous
time; in Section 4.2, I show that inference of the number of hidden underlying states is impossible if all
hidden underlying states are identical; and in Section 4.3, I prove that these binary syncable nonunifilar
HMMs are causally reversible. In Section 5, I provide formulas for statistical complexity and entropy rate
for syncable nonunifilar HMMs that emit at least three or more symbols. Interestingly, it seems that these
syncable nonunifilar HMMs are causally irreversible in general, unlike their binary counterparts.

2 Simple nonunifilar source

Figure 1: At top is the nonunifilar HMM and at bottom is its epsilon machine presentation.

See Figure 1. The causal states of the SNS are denoted here as si with i = 0, .... The causal state s0

captures all histories that end in a 0 (are on state A) and the causal state si, i ≥ 1, captures all histories
that end in 01i. Each of these are causal states because until a 0 is seen, nothing is synced– we could be
in state A or in state A or B with varying mixed state probabilities. The transition probabilities between
causal states are given as follows. Since a 0 is always followed by a 1,

M (1)
s1,s0 = p(s0 →1 s1) = 1, M (0)

s1,s0 = p(s0 →0 s1) = 0. (1)

Causal state si can only be followed by si+1 (if a 1 is emitted) and s0 (if a 0 is a emitted). The transition
probabilities are found via the usual

M (1)
sn,sn−1

= p(sn−1 →1 sn) =
p(...01n)

p(...01n−1)
=

1>
(
T (1)

)n
T (0)π

1>
(
T (1)

)n−1
T (0)π

, (2)
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where

π =

(
1
2
1
2

)
(3)

and

T (0) =

(
0 1

2
0 0

)
, T (1) =

(
1
2 0
1
2

1
2

)
. (4)

This gives

M (1)
sn,sn−1

=
(n+ 1)/2n

n/2n−1
=

1

2

n+ 1

n
=

1

2

(
1 +

1

n

)
. (5)

It follows that

M (0)
sn,s0 = 1−M (1)

sn,sn−1
=

1

2

(
1− 1

n

)
. (6)

This constitutes a complete characterization of the forward epsilon machine of the SNS.

2.1 Calculation of stationary distribution and statistical complexity of the for-
ward epsilon machine

The stationary distribution has that the probability flowing into each of the causal states is equivalent to
the probability flowing out. For causal state sn with n ≥ 2, as probability can flow into sn from sn−1 only
and probability always flows out (either to sn+1 or s0), this yields the equation

p(sn|sn−1)πn−1 = πn →
πn
πn−1

=
1

2

(
n+ 1

n

)
. (7)

This recursive equation gives a simple expression for the probability πn in terms of π1:

πn
π1

=

n∏
i=2

πi
πi−1

=

n∏
i=2

1

2

(
i+ 1

i

)
=

1

2n−1
× n+ 1

2
=
n+ 1

2n
. (8)

Balancing the probability flow into and out of causal state s1 is given similarly by

p(s0 →1 s1)π0 = π1 → π1 = π0. (9)

Finally normalization of probabilities means

∞∑
i=0

πi = 1→ π1 + π1 ·
∞∑
i=1

i+ 1

2i
= 1. (10)

The infinite sum is easily found via

∞∑
i=1

i+ 1

2i
=

∞∑
i=1

2−i +

∞∑
i=1

i2−i (11)

=

∞∑
i=1

2−i +

∞∑
i=1

2−i +

∞∑
i=2

2−i + ... (12)

=

∞∑
i=1

2−i +

∞∑
j=1

∞∑
i=j

2−i (13)

= 1 +

∞∑
j=1

2−j

1− 1
2

(14)

= 1 + 2

∞∑
j=1

2−j = 1 + 2(1) = 3. (15)
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Therefore,

π1 = π0 =
1

4
, πn =

n+ 1

4 · 2n
. (16)

Finally, just as a consistency check, probability flow into and out of causal state s0 must balance, yielding

π0 =

∞∑
i=1

p(si →0 s0)πi =

∞∑
i=1

1

2

(
1− 1

i+ 1

)
× i+ 1

2i
π1 → 1 =

1

2

∞∑
i=1

i

2i
. (17)

This equality is indeed true. The resulting statistical complexity is just (with the aid of Mathematica’s
summation function so as to avoid fucking up)

Cµ = H[π0, π1, ...] = −
∞∑
i=0

πi log2 πi (18)

=
1

2
+

7

2
− 1.28853 = 2.71147 bits. (19)

2.2 Calculation of hµ(L) for the forward epsilon machine

We can easily calculate the entropy rate hµ from the unifilar presentation as

hµ =
∑
i

hsiπi. (20)

The entropy rate for causal state s0 isH[1] = 0; the entropy rate for causal state si, i ≥ 1, isH[ 1
2

(
1 + 1

i+1

)
] =

H[ i
2(i+1) ]. Thus

hµ =

∞∑
i=1

H[
i

2(i+ 1)
]
i+ 1

4 · 2i
(21)

= −
∞∑
i=1

(
i

2(i+ 1)
log2

i

2(i+ 1)
+

i+ 2

2(i+ 1)
log2

i+ 2

2(i+ 1)

)
× i+ 1

4 · 2i
(22)

' 0.678 bits. (23)

Our goal, however, is to calculate hµ(L) from causal shielding arguments. From an explicit formula for hµ(L)
we will be able to calculate E as the sum of hµ(L)− hµ, for instance.

The formula for hµ(L) from the mixed state presentation or (in this case, as they are equivalent) causal
states is

hµ(L) = H[XL|RL, R0 = µ0]. (24)

Here, the initial mixed state µ0 is that all the weight is on s1; RL is obtained by multiplying µ0 by the
transition matrix over causal state space L times. Each causal state has a particular entropy rate given
by the entropy of its outgoing transition probabilities. Superficially, it seems impossible that we would be
able to calculate hµ(L) even using causal shielding because there are a countable infinity of causal states.
However, the number of populated causal states grows only linearly with the number of iterations of our
dynamics, as sn is only connected to s0 and sn+1. As such, if we want to calculate hµ(L), we only need to
consider the transition matrix over causal states si, i = 0, ..., L+ 1:

hµ(L) = h>ML
L+1×L+1µ0 (25)

where M = M (1) + M (0) given previously and h is a list of the entropy generation of each causal state,
h(sn) = H[n−1

2n ]. Matlab code presented in the Appendix can calculate hµ(L) for various L. The figure
below shows that hµ(L) rapidly decreases as a function of L to its asymptotic value given in eqn. 23.
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Figure 2: Entropy rate estimates of the simple nonunifilar source from Matlab code listed above. Note that
the x-axis starts at L = 0, corresponding to my definition that hµ(L) = H(L + 1) −H(L) (sorry) and also
note the quick decay to the entropy rate given in eqn. 23. Estimate of E = 0.14723 bits, giving a forward
crypticity estimate of χ+ = C+

µ − E = 2.5642 bits.

2.3 Time-reversed epsilon machine

Calculation of the time reversed epsilon machine can proceed by first calculating the time-reversed nonunifi-
lar presentation of the SNS, and then generating the corresponding epsilon-machine. The time-reversed
nonunifilar presentation is clearly isomorphic to its forward-time nonunifilar presentation, modulo switching
the labels of the states A and B. This can be seen from the equations

T̃ (1)
yx = T (1)

xy

πy
π̃x

=
1

2
δxy 6=BA ×

1/2

1/2
=

1

2
δyx6=AB (26)

and

T̃ (0)
yx = T (0)

xy

πy
π̃x

=
1

2
δxy=BA ×

1/2

1/2
=

1

2
δyx=AB . (27)

Therefore, the reverse-time epsilon machine is equivalent to that of the forward epsilon machine. Both have
statistical complexity C−µ = C+

µ = 2.71147 bits, making this a causally reversible process:

χ+ = C+
µ − E = 2.5642 bits = C−µ − E = χ− ⇒ Ξ = ∆χ = 0. (28)

2.4 Bidirectional epsilon machine

Time reversing M+ was quite easy, but unifilarizing it was not, and so I will have to leave this calculation
to someone else with more patience.
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Figure 3: At top is the nonunifilar HMM, variation on the simple nonunifilar source, and at bottom is its
epsilon machine presentation. p and q are adjustable parameters.

3 Variation on the simple nonunifilar source

Now we investigate a slight variation on the simple nonunifilar source in which the transition probabilities
are adjustable:

T (1) =

(
1− p 0
p 1− q

)
, T (0) =

(
0 q
0 0

)
. (29)

See Figure 3. The corresponding stationary distribution over the original states is

π =

( q
p+q
p
p+q

)
. (30)

The mixed state presentation and the causal states, just as in the nonunifilar presentation, can be identified
as s0 (all histories that end in a 0, syncing to state A in the nonunifilar presentation) and si (all histories
that end in a 01i, some mix of probability over state A and B in the nonunifilar presentation) with i ≥ 1.
Then, similar to the simple nonunifilar source, we find that1

M
(x)
n−1,n = δx,1

1>
(
T (1)

)n
T (0)π

1>
(
T (1)

)n−1
T (0)π

= δx,1
p(1− q)n − q(1− p)n

p(1− q)n−1 − q(1− p)n−1
(31)

and

M
(x)
n,0 = δx,0

1>T (0)
(
T (1)

)n
T (0)π

1>
(
T (1)

)n
T (0)π

= δx,0
pq ((1− q)n + (1− p)n)

p(1− q)n − q(1− p)n
(32)

1Found with the aid of Mathematica, but could just has easily been done using matrix diagonalization.
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for n ≥ 1. Causal state s0 transitions only to s1 and emits a 1. This implies, using steps similar to those
introduced for the simple nonunifilar source, that the stationary distribution on causal states is

πn =

∏n
k=2Mk−1,k

2 +
∑∞
j=2

∏j
k=2Mk−1,k

, n ≥ 2 (33)

and

π1 = π0 =
1

2 +
∑∞
j=2

∏j
k=2Mk−1,k

. (34)

These expressions can be simplified by noting that

j∏
k=2

Mk−1,k =

j∏
k=2

1>
(
T (1)

)k
T (0)π

1>
(
T (1)

)k−1
T (0)π

=
1>
(
T (1)

)j
T (0)π

1>T (1)T (0)π
=
p (1− q)j − q (1− p)j

p− q
(35)

and therefore

π0 =
1

2 +
∑∞
j=2

p(1−q)j−q(1−pj)
p−q

=
1

2 + p
p−q

(1−q)2
1−(1−q) −

q
p−q

(1−p)2
1−(1−p)

=
1

2 + p+q
pq − 2

=
pq

p+ q
, (36)

which is akin to the number of transitions in a unit time step made from state B. This also gives

πn =
p (1− q)n − q (1− p)n

p− q
× pq

p+ q
. (37)

From this, we can calculate the statistical complexity:

C+
µ (p, q) = −

∞∑
n=0

(
p (1− q)n − q (1− p)n

p− q
× pq

p+ q

)
log2

(
p (1− q)n − q (1− p)n

p− q
× pq

p+ q

)
. (38)

The figure below shows C+
µ (p, q) for various values of p and q. It is similarly easy to calculate the entropy

rate by noting that the entropy accorded to causal state sn is just H[pq((1−q)
n+(1−p)n)

p(1−q)n−q(1−p)n ], which means that

hµ(p, q) =

∞∑
n=0

(
H[

pq ((1− q)n + (1− p)n)

p(1− q)n − q(1− p)n
]

)(
p (1− q)n − q (1− p)n

p− q
× pq

p+ q

)
. (39)

The entropy rate as a function of p and q is shown also in the figure below. We can easily find the statistical
complexity of the reverse time process by time-reversing the nonunifilar presentation. Then, the transition
from B to A has probability

T̃
(x)
BA = δx,1TAB

πA
πB

= δx,1p
q/p+ q

p/p+ q
= qδx,1 (40)

and the transition from A to B has probability

T̃
(x)
AB = δx,0TBA

πB
πA

= δx,0q
p/p+ q

q/p+ q
= pδx,0. (41)

In other words, the reverse time nonunifilar presentation merely switches the labels on states A and B. This
implies that

C−µ (p, q) = C+
µ (q, p) (42)

and therefore
Ξ(p, q) = C+

µ (p, q)− C−µ (p, q) = C+
µ (p, q)− C+

µ (q, p). (43)
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Figure 4: Cµ(p, q) in bits from eqn. 38 plotted as a contour plot (left) and three-dimensional plot (right).
Statistical complexity decreases with both increasing p and increasing q.

Figure 5: hµ(p, q) in bits from eqn. 39 plotted as a contour plot (left) and three-dimensional plot (right).
Entropy rate is largest for p, q ∼ 1

2 .

Since C+
µ (p, q) is symmetric with respect to p and q by inspection of eqn. 38,

Ξ(p, q) = 0. (44)

This class of nonunifilar word generators is causally reversible. Therefore, for the remainder of this section,
we will drop the superscripts in C±µ and just denote the statistical complexity as Cµ.

As might have been expected, the hardest calculation is that of excess entropy. I again do not have
the patience to unifilarize the infinite state time-reversed forward epsilon machine, so I content myself with
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approximations of excess entropy using the code in the Appendix. When calculating the excess entropy for
the general p, q case, one must consider the infinite set of transient states that correspond to observing
word distributions of the form 1n, since the initial mixed state presentation has full weight on one of these
transient states. Approximations to the excess entropy and crypticity, ξ = Cµ − E, as functions of p and
q are shown in the figure below. Notice that excess entropy is anti-correlated with statistical complexity
over the parameter space, i.e. predictability need not be correlated with the amount of memory required for
prediction.

Figure 6: E(p, q) in bits calculated using the code above, plotted as a contour plot (left) and three-dimensional
plot (right). Excess entropy increases with both increasing p and increasing q.

3.1 Extension to continuous time

Supposing that the discrete time stochastic transition matrices T (1) and T (0) were derived from some con-
tinuous time dynamics, in which

d

dt

(
p(A)
p(B)

)
=

(
−kAB kBA
kAB −kBA

)(
p(A)
p(B)

)
, (45)

where kAB and kBA are “kinetic rates” that might have to do with the system’s intrinsic characteristics,
e.g. activation energies or scattering cross sections. The corresponding discrete time dynamics can be
approximated for small time steps ∆t as(

p(A, t+ ∆t)
p(B, t+ ∆t)

)
=

(
1− kAB∆t kBA∆t
kAB∆t 1− kBA∆t

)(
p(A, t)
p(B, t)

)
. (46)

Matching the transition matrix elements in the equation above to T (1) and T (0) given in eqn. 29, we see that

p = kAB∆t, q = kBA∆t. (47)

My goal in this next few sets of equations will be to determine how entropy rate, statistical complexity, excess
entropy, and crypticity scale with ∆t. Hopefully, this will allow me to break up these information theoretic
quantities that characterize time series data into a quantity that depends on the physical parameters of the
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Figure 7: ξ(p, q) in bits, calculated as Cµ − E, plotted as a contour plot (left) and three-dimensional plot
(right). Crypticity increases as p and q decrease.

underlying system (i.e., kinetic rates kAB and kBA) and a quantity that depends on the time resolution of
the measuring instrument ∆t.

We start with the statistical complexity. The πn for p = q = k∆t are given by

πn =
p

2
(1− p)(n−1)

(1 + (n− 1)p) =
k∆t

2
(1− k∆t)

n−1
(1 + (n− 1)k∆t) (48)

with π0 = π1 = k∆t
2 . As n increases, πn is the product of a term that increases linearly with n and another

that decreases exponentially with n. The “timescale” on which the exponential term decreases is 1
k∆t . We

are supposed to calculate −
∑∞
n=1 πn log2 πn, but maybe, we should index πn by a continuous variable πt,

which will have a probability distribution defined by πn in the limit of ∆t→ 0:

πt = lim
∆t→0, t=n∆t

πn =
k

2
(1 + kt)e−kt. (49)

This happens to be a correctly normalized distribution. In the more general case in which p and q are not
identical,

πt = lim
∆t→0, t=n∆t

πn =
kABkBA
kAB + kBA

kABe
−kBAt − kBAe−kABt

kAB − kBA
, (50)

which also happens to be a correctly normalized distribution. (The fact that these are correctly normalized
without any legwork is a sign that the limit to continuous was taken correctly.) Now we calculate

Cµ = −
∫ ∞

0

πt log2 πtdt. (51)
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In the case that kAB = kBA, we can calculate this quite easily:

Cµ = −
∫ ∞

0

1

2
k(1 + kt)e−kt

(
log2

k

2
+ log2(1 + kt)− kt

log 2

)
dt (52)

= log2

2

k
+

3

2 log 2
− k

2

∫ ∞
0

(1 + kt)e−kt log2(1 + kt)dt (53)

= log2

2

k
+

3

2 log 2
− k

2

∫ ∞
0

(1 + x)e−x log2(1 + x)
dx

k
(54)

= log2

2

k
+

3

2 log 2
− 1

2

∫ ∞
0

(1 + x)e−x log2(1 + x)dx (55)

' 1.013 + log2

2

k
bits. (56)

It is not lost on me that 2
k is the natural relaxation time of the original system and an eigenvalue of the

matrix T (1) + T (0). This formula will be explored more generally in a later section. I wasn’t able to do a
similarly cute manipulation for the case in which kAB 6= kBA due to a pesky difference in the logarithm, but
I evaluated Cµ numerically as a function of kAB and kBA and the results are shown below. There are a few
differences between the contour plot shown below and the contour plot shown previously– for instance, when
kAB = kBA, the statistical complexity decreases in a discontinuous manner. (The continuous time formalism
forces us to deal with the degeneracy in the eigenvalue spectrum of the continuous time transition matrix(
−k k
k −k

)
. Still pondering why this discontinuity would not manifest itself at all in the discrete case.) But

as was true for the discrete case, Cµ is still larger when k is smaller, basically because the relaxation time
scale increases and the statistical complexity increases as the log of that relaxation time. What this limit
actually means is that the countable infinity of causal states becomes an uncountable infinity in the limit of
continuous time.

Figure 8: Cµ in bits calculated using the code above. Due to log2
2
k , Cµ can be negative for large k. This is

one of those weird things about differential entropy that I am unsure how to deal with.

The next obvious step would be to compute hµ in closed form as an integral over all time. There is,
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however, a problem. The entropy rate for each causal state is

ht = lim
∆t<<1,t=n∆t

H[Mn,0] = H[
kABkBA(e−kABt + e−kBAt)

kABe−kBAt − kBAe−kABt
∆t]. (57)

In order to avoid showing that ht → 0 in the limit that ∆t → 0, I only took the limit as ∆t grew smaller
and smaller. A simple expansion shows

H[α∆t] = − 1

ln 2
(α∆t lnα∆t− (1− α∆t) ln(1− α∆t)) ' −α∆t

ln 2
(lnα∆t+ 1) (58)

which means that the entropy rate of each causal state is proportional to ∆t and that ht → 0 in the limit of
continuous time, ∆t→ 0. This would then imply that

hµ =

∫ ∞
0

πthtdt→ 0 (59)

but there should be a nontrivial definition of entropy rate for a continuous process that results in a finite
value. If we assume that really, the entropy rate coming from each causal state in the limit of continuous time

should be H[α∆t]
∆t (to rescale the time axis to be in units of the time resolution) then the term lnα∆t would

cause the expression for entropy rate to increase without bound. Hopefully, someone else knows the answer
to the question of whether or not entropy rate should/will increase without bound for some continuous time
processes, and if there is any meaning as to how it increases without bound as ∆t→ 0.

So what about E? Unfortunately, I did not unifilarize the reverse time mixed state presentation to get
a closed form solution for E as a function of p and q, which makes taking the limit of small ∆t difficult.
The numerical results in the section above suggested strongly that E does not increase without bound as
∆t decreased to 0, although it’s also the case that I found it numerically impossible to evaluate E for very
small ∆t. My only explanation for the shape of E– that it decreases as kinetic rate decreases, opposite to
the structural complexity– is that the mutual information between the past and future is increased when
the time between successive 0’s (syncing to internal states) is decreased. This is reflected in the following
estimation. Clearly, one of the main contributions to the mutual information between the past and the future
is the “no successive zeros” rule: if you see a 0, you must see a 1. This manifests itself in the following way:

I(xt+∆t;xt) = H[xt+∆t]−H[xt+∆t|xt] = H[xt+∆t]− p(1)H[xt+∆t|xt = 1]. (60)

Going back to using p and q, we have

H[xt+1] = H[
pq

p+ q
], (61)

p(1) = 1− p(0) = 1− pq

p+ q
, (62)

and to find H[xt+∆t|xt = 1] = H[p(0|1)],

p(0|1) =
p(1, 0)

p(1)
=
πAp(ABA) + πBp(BBA)

1− p(0)
=

q
p+qpq + p

p+q (1− q)q
1− pq

p+q

=
pq

p+ q − pq
(63)

Surprisingly, for p = kAB∆t, q = kBA∆t, and ∆t << 1, the mutual information scales as ∆t2 according to
Mathematica’s series expansion (I got lazy):

I(xt+∆t;xt) ≈
(

kABkBA
kAB + kBA

∆t

)2

. (64)

In reality, if we see a 0, then we know that the next ∼ 1
(kAB+kBA)∆t symbols are likely to be a 1 also, which

means that a rough estimate for how E should scale is

E ∼ 1

(kAB + kBA)∆t
I(xt+∆t;xt) ≈

k2
ABk

2
BA∆t

(kAB + kBA)3
= π2

Aπ
2
B(kAB + kBA)∆t. (65)
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So as ∆t→ 0, E would tend towards 0, which is (in fact) what the numerical results seem to suggest. And
the dependence of E on kAB and kBA according to the equation above is similar to the dependence observed
numerically– E increases with kinetic rates. See Figure below, which shows I(xt+1;xt) as a function of p
and q.

Figure 9: I(xt+1;xt) in bits as a function of p and q. Compare to E as a function of p and q.

Preliminary conclusions: continuous time is interesting, and results (i.e., discontinuities) can appear in
continuous time that did not appear in discrete time. It seems like E and Cµ are anti-correlated over
parameter space even when we are talking about continuous time processes. For this particular system,
the two constitute very different measures of underlying “structure”. The excess entropy is maximized for
processes that look closer to periodic (highly predictable) and the statistical complexity is maximized for
processes that have long relaxation times.

4 Another simple binary nonunifilar source

Here we consider a different class of simple binary nonunifilar sources, but the topology of connections of
the corresponding epsilon machine and mixed state presentation are the same as for the simple nonunifilar
source. See Figure 10. Hence, much of the machinery developed previously carries over exactly. The state
space is given by T (0) and T (1), with π the eigenvector with eigenvalue 1 of T = T (0) + T (1). The recurrent
causal states are (similar to the SNS) the groupings of histories defined by 01n, n = 0, ... and we let sn
denote the causal state 01n. Transitions to state s0 emit a 0; transitions to any other causal state emit a 1.
The transition probabilities between these causal states are given by

Msn→s0 = Mn,0 =
1>T (0)

(
T (1)

)n
T (0)π

1>
(
T (1)

)n
T (0)π

(66)
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Figure 10: At top is a schematic of the nonunifilar HMM. Transitions to a state in group 0 emit a 0 and
transitions to state in group 1 emit a 1; the state space is fully connected. At bottom is its epsilon machine
presentation. The self-loop on causal state s0 was not present in the epsilon machine presentation of the
simple nonunifilar source.

and

Msn→sn+1
= Mn,n+1 = 1−Mn,0 =

1>
(
T (1)

)n+1
T (0)π

1>
(
T (1)

)n
T (0)π

. (67)

The transitions from s0 to s1 are given by

Ms0→s1 =
1>T (1)T (0)π

1>T (0)π
(68)

and

Ms0→s0 =
1>
(
T (0)

)2
π

1>T (0)π
. (69)

From these transition probabilities, we can solve for the statistical complexity in full generality. Again, in
equilibrium, the probability flow into and out of causal state sn must balance:

πn = Mn−1,nπn−1 →
πn
πn−1

= Mn−1,n =
1>
(
T (1)

)n
T (0)π

1>
(
T (1)

)n−1
T (0)π

. (70)
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Therefore,

πn
π0

=

n∏
k=1

πk
πk−1

=
1>
(
T (1)

)n
T (0)π

1>T (0)π
. (71)

Normalizing the probability distribution gives

1 =

∞∑
n=0

πn (72)

=

∞∑
n=0

1>
(
T (1)

)n
T (0)π

1>T (0)π
π0 (73)

=
1>
(
1− T (1)

)−1
T (0)π

1>T (0)π
π0 (74)

π0 =
1>T (0)π

1>
(
1− T (1)

)−1
T (0)π

. (75)

We can therefore write all of the πn as

πn =
1>
(
T (1)

)n
T (0)π

1>
(
1− T (1)

)−1
T (0)π

. (76)

The statistical complexity is just

Cµ = −
∞∑
n=0

πn log2 πn = −
∞∑
n=0

1>
(
T (1)

)n
T (0)π

1>
(
1− T (1)

)−1
T (0)π

log2

1>
(
T (1)

)n
T (0)π

1>
(
1− T (1)

)−1
T (0)π

. (77)

This expression can be simplified if we note that each of these expressions are actually scalars, and so

Cµ = log2

(
1>
(

1− T (1)
)−1

T (0)π

)
−
∞∑
n=0

1>
(
T (1)

)n
T (0)π

1>
(
1− T (1)

)−1
T (0)π

log2

(
1>
(
T (1)

)n
T (0)π

)
. (78)

And that’s about the best I can do with that expression. The entropy rate can similarly be calculated in
closed form, since the entropy production of each recurrent causal state is

hsn = H[Mn,0] = H[
1>
(
T (1)

)n+1
T (0)π

1>
(
T (1)

)n
T (0)π

]. (79)

Therefore,

hµ =

∞∑
n=0

hsnπn =

∞∑
n=0

1>
(
T (1)

)n
T (0)π

1>
(
1− T (1)

)−1
T (0)π

H[
1>
(
T (1)

)n+1
T (0)π

1>
(
T (1)

)n
T (0)π

]. (80)

To evaluate the excess entropy and crypticity, we need to calculate the mixed state presentation, which
involves (as before) the transient mixed states corresponding to observations of words 1n. The mixed state
s−n denotes observing 1n. The transitions between these mixed states (emitting a 1) and to s0 (emitting a
0) are given by

M−n,0 =
1>T (0)

(
T (1)

)n
π

1>
(
T (1)

)n
π

(81)

and

M−n,−(n+1) =
1>
(
T (1)

)n+1
π

1>
(
T (1)

)n
π
. (82)

See code in the Appendix.
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4.1 Continuous limit

To take this to the continuous limit, we note that for this particular set of nonunifilar word generators, the
matrices T (1) and T (0) can be written as

T (0) =

(
1− kA∆t v1×N

0N×1 0N×N

)
, T (1) =

(
0 01×N

wN×1 IN×N +M∆t

)
(83)

where N is the number of states. The subscripts indicate the size of the matrix where appropriate, but will
be dropped from here on out. The matrices w, v, M have a list of the kinetic rates into and out of the
various states in the nonunifilar system. In terms of these matrices, in the limit of small ∆t, πn adopts the
simple form

πn+1 =
1>enM∆tw

1>M−1w
∆t, π0 =

1

1>M−1w
∆t. (84)

This suggests that the continuous state space implementation of the causal states would have

πt =
1>eMtw

1>M−1w
(85)

and

Cµ = −
∫ ∞

0

πt log2 πtdt = −
∫ ∞

0

1>eMtw

1>M−1w
log2

1>eMtw

1>M−1w
dt (86)

= log2

(
1>M−1w

)
−
∫ ∞

0

1>eMtw

1>M−1w
log2

(
1>eMtw

)
dt. (87)

It is no surprise that the statistical complexity should be related to the natural relaxation times of the
system, given that the information about relaxation times is contained in M and w. In particular, if we
diagonalize M = SDS−1, then the eigenvalues −~λ that sit on the diagonal of D are the negative inverse
relaxation times, so

Cµ = log2(1>S−1D−1Sw)−
∫ ∞

0

1>S diag(e−
~λt)S−1w

1>S−1D−1Sw
log2(1>S diag(e−

~λt)S−1w)dt. (88)

This expression is still rather intractable, so suppose that all of the eigenvalues λi = λ are identical. In that
case, the eigenvectors of M can be chosen without loss of generality to be the basis vectors êi. Then Cµ
collapses to the particularly simple

Cµ = log2(
1

λ

∑
i

wi)−
∫ ∞

0

λe−λt log2(e−λt
∑
i

wi)dt (89)

= log2

1

λ
+

1

ln 2
(90)

As expected, the statistical complexity grows as the logarithm of the relaxation time 1
λ , plus an additional

constant that (it seems) has only to do with the topological structure of the causal states.
I attempted to calculate hµ but ran into the same problems that I did for the variation on the simple

nonunifilar source with the time resolution.

4.2 Can we infer the N hidden states?

One of the biggest issues in nonunifilar HMM inference is identifying the number of hidden states that
correspond to each observed symbol. Even with perfect noiseless data, this could be a difficult problem for
certain pathological cases. Let us suppose that the state x(t), in which

x(t) =


p(A, t)
p(B1, t)

...
p(BN , t)

 (91)

16



evolves according to
dx

dt
= Mx. (92)

The notation used here is that 1m×n denotes a matrix of dimension m by n in which all of the entries are
1’s, and In denotes the (square) identity matrix of column length (or row length) of N . The solution to this
equation in general is merely

x(t) = eMtx(0) (93)

and when M can be diagonalized as M = SDS−1, this is solved as a sum of exponentials with N+1 different
time constants, one of which is 0 (corresponding to the stationary distribution.) So in general, unless some
of the hidden states impose a degeneracy of relaxation times, fitting the autocorrelation function alone to a
sum of exponentials will allow us to interpret the number of hidden states.

But what if there is degeneracy in the eigenspectrum of M? Let us first consider a particular instantiation
of this problem in which the N hidden states are identical and in which the state space is fully connected:

M =

(
−NkA kB11×N
kA1N×1 kB1N×N − (N + 1)kBIN

)
. (94)

For this particular matrix M , there are only three distinct eigenvalues: 0, with eigenvector

π =


kB

kB+NkA
kA

kB+NkA
...
kA

kB+NkA

 (95)

i.e. stationary distribution; − (kB +NkA), with eigenvector

v0 =


−N

1
...
1

 , (96)

and eigenvalue − (N + 1) kB with multiplicity N − 2. The autocorrelation function will now be a linear
combination of three exponentials, and it is difficult to see how one would infer the presence of N hidden
states.

The epsilon-machine in general provides far more information about the system than just the autocor-
relation function, but for this particular nonunifilar HMM, the epsilon-machine is almost a recasting of the
autocorrelation function. It, too, is insensitive to the number of hidden states if we hold πA and Nab constant,
i.e. if we hold the probability of observing a 0 constant. To hold these two variables constant, it is sufficient
to set kA → kA/N and to keep kB constant and independent of N . Additionally using the continuous to
discrete transformation T = I +M∆t introduced previously, we have

T =

(
1− kA∆t kB∆t11×N
kA
N ∆t1N×1 kB∆t1N×N + (1− (N + 1)kB∆t) IN

)
. (97)

When we transition to state A, we emit 0; otherwise we emit a 1; and this is shown in the matrices T (1) and
T (0) below:

T (0) =

(
1− kA∆t kB∆t11×N

0N×1 0N×N

)
(98)

and

T (1) =

(
0 01×N

kA
N ∆t1N×1 kB∆t1N×N + (1− (N + 1)kB∆t) IN

)
. (99)
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The transition probabilities between recurrent causal states are given by
1T (T (1))

n+1
T (0)π

1T (T (1))
n
T (0)π

and the transition

probabilities between transient mixed states are given by
1T (T (1))

n+1
π

1T (T (1))
n
π

.

Claim: If πA and Nab are held constant for N by varying kinetic rates kA → kA/N , kB → kB , then the
epsilon machine, and all information theoretic quantities calculable from it will be independent of the number
of hidden states N .
Proof: If I can show that

fn =
1T
(
T (1)

)n
T (0)π

1TT (0)π
(100)

is independent of N , then it follows that the transition probabilities in the epsilon machine presentation
are independent of N , from which it also will follow that the statistical complexity and entropy rate are
independent of N .
First looking at fn, we see that

T (0)π =

(
(1− kA∆t)

kB
kB + kA

+NkB∆t
kA/N

kB + kA

)
1
0
...
0

 =
kB

kA + kB


1
0
...
0

 , (101)

T (1)T (0)π =
kA∆t

N


0
1
...
1

 , (102)

and (
T (1)

)m
T (1)T (0)π =

kA∆t

N
Rm1N×1 (103)

where
R = kB∆t 1N×N + (1− (N + 1)kB∆t) IN . (104)

Clearly 1N×1 is an eigenvector of R since it is an eigenvector of 1N×N with eigenvalue N and an eigenvector
of the identity matrix IN with eigenvalue 1; hence it is an eigenvector of R with eigenvalue NkB∆t + (1 −
(N + 1)kB∆t) = 1− kB∆t. Therefore,

Rm1N×1 = (1− kB∆t)
m

1N×1, (105)

which then allows us to say that, for n ≥ 2

fn =
kB

kA+kB
kA∆t
N (1− kB∆t)

n−1
(N)

kB
kA+kB

= kA∆t (1− kB∆t)
n−1

, (106)

which is independent of N . Hence transition probabilities between causal states are independent of N as
well, and the epsilon machine cannot distinguish between different numbers of identical hidden states if πA
and Nab are held constant.

Excess entropy is also independent of N , using similar steps to the proof above to find transition prob-
abilities between transient mixed states. So now we can rephrase our original question. We cannot detect
the number of hidden states with πA and Nab held constant when hidden states are all identical, but we can
ask how Cµ, E, χ, hµ vary as functions of kA and kB in the case of identical hidden states. The answers
are shown in Figures 11-14. Code that was used to calculate this is in the Appendix.
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Figure 11: Statistical complexity is highest when probability flows quickly out of A into the hidden states
and slowly amongst the hidden states.

Figure 12: Excess entropy is largest when probability flows slowly both from the syncing state to the hidden
state and amongst the hidden states.

If there is a definite bias amongst the hidden states, then Cµ, E, χ, and hµ change noticeably as a
function of the number of hidden states, even when controlling for πA and Nab. As a particular example, I
choose to allow the outgoing kinetic rates of the hidden states adopt the form

kBi→Bj
= f(

i

N
)kB , (107)
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Figure 13: The crypticity looks very much like the statistical complexity.

Figure 14: The entropy rate is largest when the probability flows quickly amongst the syncing state A and
the hidden states Bi.

and then adjust kB so as to keep πA and Nab constant. Detailed balance at stationarity establishes that

πikBi→Bj
= πjkBj→Bi

→ πif(i/N) = πjf(j/N). (108)

Then, normalizing the distribution so that
∑N
i=1 πi + πA = 1, we find that

πA =
1/kA

1
kA

+
∑N
i=1

1
kB f(i/N)

(109)
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and therefore that

Nab = kAπA =
1

1
kA

+
∑N
i=1

1
kB f(i/N)

. (110)

Therefore, we adjust kA → kA/N and kB → kB
N

∑N
i=1

1
f(i/N) to control for πA and Nab. Now we find that

different functions f(i/N) lead to different forms of these information theoretic quantities as a function of N ,
as shown in Figures below. Interestingly, when noise is added to the kinetic rates so that kA→Bi = kA (1 + ηi)
and kBi→Bj

= kBi
(1 + ηi) where ηi ∼ N (0, 1

100 ) is uncorrelated white noise, the effect of N on entropy rate
is most robust. The systematic effect of N on the other information theoretic quantities that relate more
strongly to intrinsic structure– E, χ, Cµ– is swamped by the noise. This is, in some ways, great news. It is
much easier to calculate entropy rate than it is to calculate Cµ, for instance, from a data stream given that
the epsilon-machine has a countable infinity of causal states.

4.3 Causal irreversibility

These simple nonunifilar binary word generators appear (numerically) to be causally reversible, surprisingly.
In fact, I claim something stronger– the forward and reverse time epsilon machines are exactly identical.

Recall that the transition probabilities between causal states are of the form Mn,n+1 =
1>(T (1))

n+1
T (0)π

1>(T (1))
n
T (0)π

. So

if we can show that these transition matrices are equivalent for the forward and reverse time processes, then
we will have shown that the forward and reverse time epsilon machines are exactly equivalent, which implies

causal reversibility. Or, if you like, πn =
1>(T (1))

n
T (0)π∑∞

k=0 1>(T (1))
k
T (0)π

, and so if we can show that these are equivalent

in forward and reverse time, causal reversibility follows. Thus we must prove this claim:

Claim: 1>
(
T (1)

)n
T (0)π = 1>

(
T̃ (1)

)n
T̃ (0)π̃, where T̃ (x) and π̃ are the transition matrices and stationary

distribution for the time-reversed process.
Proof: First, as described in class,

Tπ = π = T̃ π̃. (111)

Let ê1,1 be the matrix with a 1 in the top left corner and nowhere else. Then T (0) can be written succinctly
as

T
(0)
ij = δi,1Tij ⇒ T (0) = ê1,1T (112)

and therefore, for this system,
T (1) = T − T (0) = (I − ê1,1)T. (113)

The time-reversed transition matrices turn out to have similar relationships:

T̃
(0)
ij = δj,1T̃ij ⇒ T̃ (0) = T̃ ê1,1 (114)

and
T̃ (1) = T̃ − T̃ (0) = T̃ (I − ê1,1) . (115)

Finally, let D = diag(π). For a time reversed process, based on the prescription described in class,

T̃ij = πiTijπ
−1
j = δi,i′πi′Ti′,j′π

−1
j′ δj,j′ ⇒ T̃ = DT>D−1. (116)

Our goal is to prove that fn = f̃n, where

fn = 1>
(
T (1)

)n
T (0)π. f̃n = 1>

(
T̃ (1)

)n
T̃ (0)π̃. (117)

Concentrating on the time-reversed f̃n and substituting in the expressions for T̃ (x) written above, we see
that we must reduce the expression

f̃n = 1>
(
DT>D−1(I − ê1,1)

)n (
DT>D−1ê1,1

)
π. (118)
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Figure 15: Again, πA and Nab are held constant and the stationary distribution across the hidden states Bi
varies according to πBi ∝ i

N . (This function was chosen randomly for illustrative purposes; other functions
revealed similar curve shapes.) The hidden state space is fully connected and each state has equal kinetic rates
to every other state. The information theoretic quantities E, hµ, χ, Cµ vary systematically as a function of
the number of hidden states N . The x-axis shows N and each plot shows one of these information theoretic
quantities. E and hµ are anti-correlated and peak/trough at finite N = 10 hidden states; the variation of
Cµ and χ with N parallel that of E.

Clearly, one of the recurring expressions in this chain is D−1 (I − ê1,1)D, which is(
D−1 (I − ê1,1)D

)
ij

=
∑
k,k′

D−1
ik (I − ê1,1)kk′ Dk′j (119)

=
∑
k,k′

π−1
i δi,kδk,k′(1− δk′,1)πjδk′,j (120)

= (1− δi,1)δi,j (121)

⇒ D−1(I − ê1,1)D = I − ê1,1. (122)
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Figure 16: Again, πA and Nab are held constant and the stationary distribution across the hidden states Bi
varies according to πBi

∝ i
N . (This function was chosen randomly for illustrative purposes; other functions

revealed similar curve shapes.) The hidden state space is fully connected and each state has equal kinetic
rates to every other state. However, there is no noise as described in the text above in the kinetic rates. The
information theoretic quantities E, hµ, χ, Cµ vary systematically as a function of the number of hidden
states N . The x-axis shows N and each plot shows one of these information theoretic quantities. The small
amount of noise corrupts the signal from Cµ and χ more than it does for E or hµ. Errorbars are not the
typical standard deviations but denote, out of 15 samples, the lowest and highest observed values of Cµ and
so on.

This relationship allows us to greatly simplify the expression for f̃n to

f̃n = 1>
(
DT>D−1(I − ê1,1)

)n (
DT>D−1ê1,1

)
π = 1>D

(
T>(1− ê1,1)

)n
T>D−1ê1,1π. (123)
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We can further simplify this using(
1>D

)
i

=
∑
j

πiδi,j = πi ⇒ 1>D = π> (124)

and (
D−1ê1,1π

)
i

=
∑
k,k′

π−1
k δk,k′δk′,i(1− δk′,1)πi = ê1 = ê1,11. (125)

This allows us to rewrite scalar f̃n as

f̃n = π>
(
T>(1− ê1,1)

)n
T>ê1,11. (126)

Note that since this is a scalar, it is equal to its transpose:

f̃n = f̃>n =
(
π>
(
T>(I − ê1,1)

)n (
T>ê1,1

)
1
)>

(127)

= 1>
(
T>ê1,1

)> ((
T>(I − ê1,1)

)>)n
π (128)

= 1> (ê1,1T ) ((I − ê1,1)T )
n
π (129)

= 1>T (0)
(
T (1)

)n
π. (130)

This is a very compact expression that is almost exactly equal to the expression for fn, which is

fn = 1>
(
T (1)

)n
T (0)π. (131)

The final trick to the proof is to show that, within this inner product,
(
T (1)

)n
, T (0) “commute”. Noting

that T (0) = T − T (1),

f̃n = 1>
(
T − T (1)

)(
T (1)

)n
π = 1>T

(
T (1)

)n
π − 1>

(
T (1)

)n+1

π. (132)

Since T is a stochastic transition matrix, 1>T = 1> (the columns must sum to 1) and also note that π can
be just as easily replaced with Tπ, as π is the right eigenvector of T with eigenvalue 1:

f̃n = 1>
(
T (1)

)n
Tπ − 1>

(
T (1)

)n+1

π = 1>
(
T (1)

)n (
T − T (1)

)
π = 1>

(
T (1)

)n
T (0)π. (133)

But this is just the same as the expression for fn! So

fn = f̃n (134)

and equivalence between forward and reverse time epsilon machines follows trivially:

πn = π̃n, Mn,n+1 = M̃n,n+1. (135)

5 Syncable non-binary nonunifilar HMMs

Another case to which the same basic methodology introduced in previous sections does apply almost trivially
is that of non-binary, syncable nonunifilar word generators. In particular, assume now that there are many
hidden states in grouping 0 and one state in groupings 1 through m. Transitions to a particular grouping lead
to emission of that grouping’s symbol. Therefore observation of any symbol that is not 0 leads to syncing, but
observing different numbers of 0’s correspond to a different mixed state, and the causal states are denoted
as y0n where y = 1, ...,m and n is any nonnegative integer. Let π denote the stationary distribution over
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the internal (hidden) states and T (x) the transition matrix corresponding to emission of letter x. Let πy,n
correspond to the stationary probability of causal state ...y0n. Any particular causal state y0n can transition
to y0n+1 or any of y′, y′ 6= 0. The probability of these transitions are

P (y0n → y0n+1) =
1>
(
T (0)

)n+1
T (y)π

1>
(
T (0)

)n
T (y)π

(136)

and

P (y0n → y′) =
1>T (y′)

(
T (0)

)n
T (y)π

1>
(
T (0)

)n
T (y)π

. (137)

To find the stationary probability distribution, we first consider the causal state ...y0n where n ≥ 1. All
probability flows out of the state, and the only way to get to the state is to come from ...y0n−1, so probability
flow balance implies

πy,n =
1>
(
T (0)

)n
T (y)π

1>
(
T (0)

)n−1
T (y)π

πy,n−1 (138)

which therefore implies that

πy,n
πy,0

=

n∏
k=1

πy,k
πy,k−1

=

n∏
k=1

1>
(
T (0)

)k
T (y)π

1>
(
T (0)

)k−1
T (y)π

=
1>
(
T (0)

)n
T (y)π

1>T (y)π
. (139)

The probability flow into and out of causal state ...y is more complicated:

∑
y′ 6=0

∞∑
n=0

P (y′0n → y)πy′,n = πy,0. (140)

Using eqns. 136-139, we can simplify the left-hand side of the above expression to

∑
y′ 6=0

∞∑
n=0

P (y′0n → y)πy′,n =
∑
y′ 6=0

∞∑
n=0

1>T (y)
(
T (0)

)n
T (y′)π

1>
(
T (0)

)n
T (y′)π

1>
(
T (0)

)n
T (y′)π

1>T (y′)π
πy′,0 (141)

=
∑
y′ 6=0

∞∑
n=0

1>T (y)
(
T (0)

)n
T (y′)π

1>T (y′)π
πy′,0 (142)

=
∑
y′ 6=0

1>T (y)
(
I − T (0)

)−1
T (y′)π

1>T (y′)π
πy′,0 (143)

and therefore eqn. 140 becomes

πy,0 =
∑
y′ 6=0

1>T (y)
(
I − T (0)

)−1
T (y′)π

1>T (y′)π
πy′,0. (144)

This equation holds for all y 6= 0, and hence we have a solvable linear system of m equations with m
independent variables πy,0, y = 1, ...,m. These probabilities are subject to a normalization constraint that

1 =
∑
y 6=0

∞∑
n=0

πy,n =
∑
y 6=0

πy,0

∞∑
n=0

1>
(
T (0)

)n
T (y)π

1>T (y)π
(145)

=
∑
y 6=0

1>
(
I − T (0)

)−1
T (y)π

1>T (y)π
πy,0. (146)
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From the solution, we can find C+
µ as the entropy of the stationary distribution:

C+
µ =

∑
y 6=0

∞∑
n=0

πy,n log2 πy,n. (147)

The entropy rate is also calculable from the fact that the entropy out of causal state y0n is

hy0n = H[
1>
(
T (0)

)n+1
T (y)π

1>
(
T (0)

)n
T (y)π

, {
1>T (y′)

(
T (0)

)n
T (y)π

1>
(
T (0)

)n
T (y)π

}y′ 6=0] (148)

and the total entropy rate is of course

hµ =
∑

y=1,...,x

∞∑
n=0

hy0nπy,n. (149)

These expressions are a bit difficult to work with. However, one quite interesting conclusion that arises from
these type of formulae is that even though syncable nonunifilar binary word generators are causally reversible,
these syncable nonunifilar ternary-or-greater word generators are not. For the purposes of elucidation, let’s
work through where the previously given proof fails for ternary-or-greater word generators. The reverse-time
statistical complexity is the entropy of the reverse-time causal state stationary distribution π̃y0n where

π̃y,n =
1>
(
T̃ (0)

)n
T̃ (y)π

1>T (y)π
π̃y,0 (150)

where

π̃y,0 =
∑
y′ 6=0

1>T̃ (y)
(
I − T̃ (0)

)−1

T̃ (y′)π

1>T̃ (y′)π
π̃y′,0. (151)

Let

fy,n = 1>
(
T (0)

)n
T (y)π, f̃y,n = 1>

(
T̃ (0)

)n
T̃ (y)π. (152)

If we can show that fy,n = f̃y,n, then it might be that these ternary-or-greater word generators might be
causally reversible. We would also need to show that the transition probabilities between causal states y and
y′ are equal to complete the proof, but this initial step fails. As discussed in Sec. 4.3, the formulae for T̃ (x)

are
T̃ (x) = DT>D−1P(x) (153)

where P(x) is the projection matrix onto the subspace corresponding to emission of the letter x, e.g. ê1,1 for
the example shown previously in Sec. 4.3, and D = diag(π). It still holds that

D−1P(x)D = P(x), 1>D = π>, D−1P(x)π = P(x)1. (154)

for the same reasons described in detail in Sec. 4.3. Therefore, for reasons also described in Sec. 4.3,

f̃y0n = f̃>y0n = 1>T (y)
(
T (0)

)n
π. (155)

Previously, we were able to claim that T (y) = T − T (0). This is no longer true; now
∑
y 6=0 T

(y) = T − T (0).
As such, the entire proof falls apart and there is no longer an argument for these systems being causally
reversible in general.
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6 Preliminary conclusions and future research

I guess I should point out that I haven’t seen these closed form analytic results given anywhere else– now,
there are closed form analytic expressions for the statistical complexity, entropy rate, crypticity, and (ap-
proximations and code for) the excess entropy of some simple binary nonunifilar word generators. And some
of the work hints at an extension of the causal states to continuous time and the “specialness” of a binary
partition with respect to causal irreversibility.

The obvious next step would be to consider a system in which grouping A has m states and grouping
B has n states. Additionally we can assume that the hidden state space is fully connected. Unfortunately,
for a system like this, each past has a different probability distribution over futures, which means that the
minimal maximally predictive model involves storing all of the past. The reason for this is that, when m
and n are both greater than 1, you can never sync to an internal mixed state unless you see an infinity of
the same symbol. (At that point, you sync to the stationary probability distribution within group A or B.)
If the hidden state space is not fully connected, then it is possible that two different pasts will lead to the
same conditional probability distribution over futures, and therefore lead to some simplification in the causal
state presentation.
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7 Appendix

I do not make any claims as to the efficiency or readability of the following Matlab code.

7.1 Code for the variation on the SNS

function [E,Cmu,hmu,xi]=SNS2_entropyrate_v2(p,q,L)

% more computational efficient version than v1.

% calculate entropy rate so you can subtract it off
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% \pi_n. you can make n a vector but p and q should be numbers

pin=@(n) p*q*(p*(1-q).^n-q*(1-p).^n)/(p^2-q^2);

pin2=@(n) 0.5*p*(1-p).^(n-1).*(1+(n-1)*p);

% entropy function

h=@(x) -x.*log2(x)-(1-x).*log2(1-x);

% transition probs amongst recurrent states, from sn-1 to sn:

T=@(n) (p*(1-q).^n-q*(1-p).^n)./(p*(1-q).^(n-1)-q*(1-p).^(n-1));

Tb=@(n) (1-p)*(1+(n-1)*p)./(1+(n-2)*p);

% transition probs amongst transient states, from tilde(s)n-1 to tilde(s)n:

T2=@(n) (p^2*(1-q).^n-q^2*(1-p).^n)./(p^2*(1-q).^(n-1)-q^2*(1-p).^(n-1));

T2b=@(n) (1-p)*(2+(n-2)*p)./(2+(n-3)*p);

x1=0:10000;

if p==q

foo=h(Tb(x1+2));

foo(isnan(foo))=0;

hmu=sum(foo.*pin2(x1+1));

foo=-[pin2(1) pin2(x1+1)].*log2([pin2(1) pin2(x1+1)]);

foo(isnan(foo))=0;

Cmu=sum(foo);

else

foo=h(T(x1+2));

foo(isnan(foo))=0;

hmu=sum(foo.*pin(x1+1));

foo=-[pin(1) pin(x1+1)].*log2([pin(1) pin(x1+1)]);

foo(isnan(foo))=0;

Cmu=sum(foo);

end

% calculate entropy rate estimates and sum them

x0=1; % \tilde{s}_{-1} initially has that much probability

%entrate=zeros(1,L-1);

xL=x0;

%plot(xL);

%hold on;

if p==q

entrate(1)=h(T2b(1))*xL;

else

entrate(1)=h(T2(1))*xL;

end

E=entrate(1)-hmu;

for i=2:L

% hsig = [entropy of transient state s_{-i}, entropy rate of s_{0:i-2}]

if p==q
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hsig=h([T2b(i) Tb(1:i-1)]);

hsig(isnan(hsig))=0;

else

hsig=h([T2(i) T(1:i-1)]);

hsig(isnan(hsig))=0;

end

x0=xL;

%cla;

%plot(xL);

%pause(0.1);

% calculate new mixed state

if p==q

% the top entry is now p(s_{-(i+1)})

xL(1)=x0(1)*T2b(i-1);

if i>2

% the next entry is now p(s_{1:i})

xL(3:i)=x0(2:i-1).*Tb(1:i-2);

% the next entry is now p(s_0)

xL(2)=x0(1)*(1-T2b(i-1));

if i>3

xL(2)=xL(2)+sum(x0(3:i-1).*(1-Tb(2:i-2)));

end

else

% the next entry is now p(s_0)

xL(2)=x0(1)*(1-T2b(i-1));

end

else

% the top entry is now p(s_{-(i+1)})

xL(1)=x0(1)*T2(i-1);

if i>2

% the next entry is now p(s_{1:i})

xL(3:i)=x0(2:i-1).*T(1:i-2);

% the next entry is now p(s_0)

xL(2)=x0(1)*(1-T2(i-1));

if i>3

xL(2)=xL(2)+sum(x0(3:i-1).*(1-T(2:i-2)));

end

else

% the next entry is now p(s_0)

xL(2)=x0(1)*(1-T2(i-1));

end

end

% calculate next point on entropy rate curve

%entrate(i)=hsig*xL’;

%E=E+(entrate(i)-hmu);

E=E+(hsig*xL’-hmu);

end

E=real(E);

%
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% plot(0:L-1,entrate,’-o’,’LineWidth’,2);

% set(gca,’FontSize’,15,’FontName’,’Helvetica’,’FontWeight’,’bold’);

% xlabel(’L’,’FontSize’,16,’FontName’,’Helvetica’,’FontWeight’,’bold’);

% ylabel(’h_{\mu}(L)’,’FontSize’,16,’FontName’,’Helvetica’,’FontWeight’,’bold’);

% crypticity estimate

xi=Cmu-E;

% hidden information estimate

% smu=E+hmu-h0;

7.2 Code for the sync-able nonunifilar binary word generators

function [hmu,Cmu,E,xi,smu]=GeneralSNS(kA,kB,N)

% N is number of hidden states

% dt is the time resolution

% hmu is entropy rate, Cmu is stat comp, E is excess entropy,

% xi is crypticity, Xi is causal reversibility

noisefrac=0.01;

% how the hidden state kinetic rates scale

f=@(i) i/N;

kB=kB*sum(f(1:N).^-1);

% set up the transition matrices T0 and T1

M=zeros(N+1);

% fill in A going to B’s

M(:,1)=M(:,1)+(kA/N)*(1+noisefrac*randn(N+1,1));

%M(1:N+1,2:N+1)=M(1:N+1,2:N+1)+kB*(1+noisefrac*randn(N+1,N));

for i=2:N+1

M(:,i)=(kB/N)*f(i-1)*(1+noisefrac*randn(N+1,1));

end

% to make sure the noise doesn’t drive to negative kinetic rates

M(M<0)=0;

% to fill in the diagonals properly

for i=1:N+1

M(i,i)=0;

M(i,i)=-sum(M(:,i));

end

% get the full transition matrix

dt=1;

T=expm(M*dt);

% get T0 and T1

T0=zeros(N+1);

T1=zeros(N+1);

%

T0(1,:)=T(1,:);

T1(2:N+1,:)=T(2:N+1,:);

% break up into w and P

% w=T(2:N+1,1);

% P=T(2:N+1,2:N+1);
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% get stationary distribution

[V,D]=eig(T);

[~,ind]=min((sum(D)-1).^2);

Pi=V(:,ind);

Pi=Pi/sum(Pi);

v=T0*Pi;

Z=sum(inv(eye(N+1)-T1)*v);

pin=@(n) sum(T1^n*v)/Z;

T00=T(1,1);

Tin=@(n) sum(T1^n*v)/sum(T1^(n-1)*v);

T2in=@(n) sum(T1^n*Pi)/sum(T1^(n-1)*Pi);

% how far do you want to go out?

% keep on getting values until you find that the entropy is 1/100th the

% contribution of pi0

ent=@(t) -t.*log2(t)-(1-t).*log2(1-t);

x=ent(pin(0));

Cmu=x;

hmu=pin(0)*ent(T00);

% build up a lookup table of transition probabilities

trans=1-T00;

k=1;

while x>10^-9*Cmu

x=ent(pin(k));

if isnan(x)

x=0;

end

Cmu=Cmu+x;

trans=[trans Tin(k+1)];

foo=ent(trans(end));

if isnan(foo)

foo=0;

end

hmu=hmu+pin(k)*foo;

k=k+1;

end

% Finding excess entropy

% calculate entropy rate estimates and sum them

x0=1; % \tilde{s}_{-1} initially has that much probability

%entrate=zeros(1,k);
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xL=x0;

hsig=ent(T2in(1));

h0=hsig*xL;

E=h0-hmu;

for i=2:k

% hsig = [entropy of transient state s_{-i}, entropy rate of s_{0:i-2}]

hsig(1)=ent(T2in(i));

hsig(i)=ent(Tin(i-1));

hsig(isnan(hsig))=0;

x0=xL;

% calculate new mixed state

% the top entry is now p(s_{-(i+1)})

xL(1)=x0(1)*T2in(i-1);

% the next entry is now p(s_0)

%xL(2)=x0(1)*(1-T2in(i-1))

xL(2)=x0(1)*(1-T2in(i-1))+sum(x0(2:i-1).*(1-trans(1:i-2)));

% if i>2

% %xL(2)=xL(2)+x0(2)*(1-Tin(1));

% %xL(3)=x0(2)*Tin(1);

% for j=3:i-1

% xL(2)=xL(2)+x0(j).*(1-Tin(j-1));

% xL(j)=x0(j-1)*Tin(j-2);

% end

% xL(i)=x0(i-1)*Tin(i-2);

% end

xL(3:i)=x0(2:i-1).*trans(1:i-2);

% calculate next point on entropy rate curve

% entrate(i)=hsig*xL’;

E=E+(hsig*xL’-hmu);

end

E=real(E);

%

% figure, plot(0:k-1,entrate,’-o’,’LineWidth’,2);

% set(gca,’FontSize’,15,’FontName’,’Helvetica’,’FontWeight’,’bold’);

% xlabel(’L’,’FontSize’,16,’FontName’,’Helvetica’,’FontWeight’,’bold’);

% ylabel(’h_{\mu}(L)’,’FontSize’,16,’FontName’,’Helvetica’,’FontWeight’,’bold’);

% crypticity estimate

xi=Cmu-E;

% hidden information estimate

smu=E+hmu-h0;

% Switch to the time-reversed transition matrices

% Tback=T;
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% for i=1:N+1

% for j=1:N+1

% Tback(i,j)=T(j,i)*Pi(i)/Pi(j);

% end

% end

% T0=zeros(N+1);

% T1=zeros(N+1);

% T0(:,1)=Tback(:,1);

% T1(:,2:N+1)=Tback(:,2:N+1);

%

% v=T0*Pi;

% Z=sum(inv(eye(N+1)-T1)*v);

% pin=@(n) sum(T1^n*v)/Z;

%

% x=ent(pin(0));

% Cmu2=x;

%

% k=1;

% while x>10^-9*Cmu2

% x=ent(pin(k));

% if isnan(x)

% x=0;

% end

% Cmu2=Cmu2+x;

%

% k=k+1;

% end
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